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Two Degenerate Boundary Equilibrium Bifurcations in Planar Filippov Systems∗

Fabio Dercole†, Fabio Della Rossa†, Alessandro Colombo‡, and Yuri A. Kuznetsov§

Abstract. We contribute to the analysis of codimension-two bifurcations in discontinuous systems by studying
all equilibrium bifurcations of 2D Filippov systems that involve a sliding limit cycle. There are only
two such local bifurcations: (1) a degenerate boundary focus, which we call the homoclinic boundary
focus (HBF), and (2) the boundary Hopf (BH). We prove that—besides local bifurcations of equilibria
and pseudoequilibria—the universal unfolding of the HBF singularity includes a codimension-one
global bifurcation at which a sliding homoclinic orbit to a pseudosaddle exists, while that of the
BH singularity has a codimension-one bifurcation curve along which a cycle grazing occurs. We
define two canonical forms, one for each singularity, to which a generic 2D Filippov system can be
locally reduced by smooth changes of variables and parameters and time reparametrization. Explicit
genericity conditions are also provided, as well as the asymptotics of the bifurcation curves in the
two-parameter space. We show that both studied codimension-two bifurcations occur in a known
2D Filippov system modeling an ecosystem subject to on-off harvesting control, and we provide two
Mathematica scripts that automatize all computations.

Key words. Filippov systems, bifurcations, codimension-two

AMS subject classifications. 34A36, 34C20, 37G10, 37N35, 93C65

DOI. 10.1137/100812549

1. Introduction. Bifurcations of discontinuous dynamical systems have received much
attention recently, not only as an interesting mathematical topic, but also in applied math-
ematical modeling of various natural, technical, and social systems (see [2, 6] and references
therein). Among discontinuous systems, one of the most studied classes are Filippov systems
[13, 14] defined by different smooth ODEs in different open domains Si separated by smooth
discontinuity boundaries. For these systems, continuous solutions can be constructed by con-
catenation of standard solutions in Si’s and sliding solutions along the boundaries. We recall
this construction briefly for n-dimensional systems depending on modeling and/or control
parameters α ∈ R

m.
Consider two adjacent parameter-dependent domains S1,2 ⊂ R

n,

S1(α) = {x ∈ R
n : H(x, α) < 0}, S2(α) = {x ∈ R

n : H(x, α) > 0},
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separated by a smooth (n − 1)-dimensional boundary Σ(α) = {x ∈ R
n : H(x, α) = 0}, where

H is a smooth scalar function with nonvanishing gradient Hx(x, α) on Σ(α), and assume that

(1.1) ẋ =

{
f (1)(x, α), x ∈ S1(α),

f (2)(x, α), x ∈ S2(α),

where f (1,2) are smooth parameter-dependent vector fields on R
n. (Though f (i) needs to be

defined only in Si, with a smooth extension to Σ, it is convenient for the analysis to assume
a global smooth definition.)

Orbits cross Σ at points where the projections of f (1,2) to Hx(x, α) have the same sign.
Where the signs are opposite, the system admits a solution that slides on Σ in accordance
with the Filippov vector field:

(1.2) ẋ = (1− λ)f (1)(x, α) + λf (2)(x, α),

with λ being selected so that ẋ is tangent to Σ. Sliding is stable (and simply called sliding)
when Σ is attracting (f (1,2) push toward Σ), and unstable (called escaping) in the opposite
case.

The (n− 2)-dimensional borders between the crossing and sliding regions of Σ are generi-
cally composed of tangency points, where one of the vector fields f (1,2) is tangent to Σ (λ = 0, 1
in (1.2), respectively). A tangency point of f (i) is called visible if the orbit of f (i) passing
through the point locally lies in Si, and invisible otherwise.

Generic equilibria of system (1.1) can be standard equilibria of f (1,2) in S1,2 or equilibria
of the Filippov vector field with λ ∈ (0, 1), called pseudoequilibria, where f (1,2) are nonzero
and anticollinear. The stability of pseudoequilibria is determined by the Filippov vector field
together with the stability of the sliding. Standard equilibria and pseudoequilibria of (1.1) are
called admissible, while equilibria of f (i) in Sj, i �= j, and equilibria of (1.2) in the crossing
region (λ < 0 or λ > 1) are called virtual. (We refer to [2, 6] for a thorough treatment of
Filippov systems.)

Bifurcation analysis of Filippov systems is nontrivial and still patchy. The interaction
of the vector fields f (1,2) with the discontinuity boundary requires a proper notion of system
equivalence and generates a great number of completely new bifurcations, where the boundary
is critically involved (discontinuity-induced bifurcations; see [2, 6]). Known results focus on
particular orbits, e.g., equilibria or cycles, and only in the case of generic 2D Filippov systems
has the classification of all one-parameter bifurcations been proposed [20] (and recently com-
pleted in [15]), together with canonical one-parameter bifurcation diagrams. We adopt the
definition of a bifurcation from [20].

Most discontinuous models used in applications have several control parameters, and their
one-parameter bifurcation diagrams depend strongly on the values of other (fixed) parameters.
To understand the rearrangements of one-parameter diagrams, one has to study so-called
codimension-two (codim 2 in the following) bifurcations, which serve as organizing centers
for two-parameter bifurcation diagrams. In the plane of two control parameters, say α1 and
α2, curves of codim 1 bifurcations meet (transversally or tangentially) at codim 2 points;
thus their analysis determines all possible one-parameter diagrams nearby. This explains the
importance of the mathematical analysis of codim 2 bifurcations that is now routinely applied
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to smooth dynamical systems, where the essential features of all local codim 2 bifurcations of
equilibria and limit cycles are well understood. In contrast, the analysis of codim 2 bifurcations
in discontinuous systems has started only recently [10, 16, 17, 22, 15, 8] and is far from
being complete, while such bifurcations appear more and more often in applications; see, e.g.,
[11, 9, 5, 18, 7, 21].

A codim 2 bifurcation of an equilibrium is of particular interest when it involves bifur-
cations of cycles or other global phenomena, e.g., homoclinic bifurcations. A typical smooth
example is the famous Bogdanov–Takens bifurcation (see, e.g., [19]), where the presence of a
codim 2 equilibrium with a double zero eigenvalue implies the existence of a limit cycle that is
generated by the Hopf bifurcation and disappears via a global saddle homoclinic bifurcation.
We expect similar phenomena also in the discontinuous case. Their analysis will provide an
analytical method to prove existence of sliding cycles and their global sliding bifurcation of
codim 1 in particular models.

In this paper, we contribute to the analysis of codim 2 bifurcations in discontinuous
systems by studying all equilibrium (local) bifurcations in 2D Filippov systems that involve
codim 1 bifurcations of sliding limit cycles. It follows from the visual inspection of all codim 1
cases treated in [20] that such codim 2 bifurcations can occur only at a degenerate boundary
focus (a focus equilibrium of the vector field f (1) or f (2) colliding with the discontinuity
boundary). There are actually only two cases, as explained at the end of section 2.1. In
one case the focus collides with a visible tangency point and a pseudosaddle and, at the
same time, the infinitesimal loop originated at the tangency point merges with the stable
manifold of the pseudosaddle. As a result, a small sliding homoclinic orbit to the pseudosaddle
exists close to the codim 2 bifurcation, and the corresponding codim 1 bifurcation curve
emanates from the codim 2 point in the universal local bifurcation diagram. For this reason,
we call this codim 2 bifurcation a homoclinic boundary focus (HBF). The second degenerate
boundary focus is the boundary Hopf (BH) bifurcation at which the focus collides with the
discontinuity boundary while being at the same time nonhyperbolic. The small-amplitude
limit cycle originating through the Hopf bifurcation grazes the discontinuity boundary close
to the codim 2 bifurcation, so that a codim 1 grazing bifurcation curve emanates from the
codim 2 point at the BH bifurcation.

In both cases (treated in sections 3.2 and 3.3, respectively), starting from a generic 2D
Filippov system exhibiting the bifurcation, we derive a canonical form to which the sys-
tem can be reduced through explicit smooth changes of variables and parameters (and time
reparametrization in the BH case) near the codim 2 point. The bifurcation analysis is then
performed on the canonical forms and provides explicit genericity conditions expressed in the
original variables and parameters. Moreover, leading asymptotics for the global bifurcation
curves (sliding homoclinic orbit to pseudosaddle and grazing) are computed in the original
parameter space. While the unfolding of the HBF case is new and rather involved, the BH
case is easier and has already been addressed in [5] and [15]. As precisely discussed in section
3.3, the unfolding in the first contribution is not generic, while the second is not complete and
does not provide means to compute the coefficients of the canonical form explicitly.

We also provide two Mathematica scripts (see 81254 01.zip [local/web 30.1KB]), one for
each studied codim 2 bifurcation, that automatically check all genericity conditions and com-
pute the bifurcation asymptotics for a generic 2D Filippov system. (The user must provide

81254_01.zip
http://link.aip.org/mm/SJADAY/100812549/81254_01.zip
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the model equations and the numerical values of the boundary equilibrium and parameters at
the codim 2 bifurcation.) The scripts are used on a known 2D Filippov system that models
a prey-predator ecosystem subject to on-off harvesting control, where both the HBF and BH
bifurcations indeed occur (section 4).

We start with a review of the codim 1 bifurcations of 2D Filippov systems that are relevant
in section 3. We label with G the genericity conditions that we assume throughout the paper,
while we use labels HBF and BH for the genericity conditions that are specific to sections 3.2
and 3.3, respectively.

2. Relevant codim 1 bifurcations of 2D Filippov systems. Here we briefly describe local
and global codim 1 bifurcations of 2D Filippov systems, which occur near the codim 2 points
in question. The presentation is based on [20] and is included for completeness.

We assume that α ∈ R is a small control parameter and that, when α = 0, the vector field
f (1) has a hyperbolic equilibrium at x = 0 lying on Σ, i.e.,

(G.1) (f (1))0 = 0, H0 = 0, Reλ01,2 �= 0,

where λ01,2 are the eigenvalues of (f
(1)
x )0 and the 0-superscript stands for evaluation at (x, α) =

(0, 0). The nonsingularity of (f
(1)
x )0 ensures that, through a parameter-dependent translation,

we can have

(2.1) f (1)(0, α) = 0,

i.e., that x = 0 is an equilibrium of f (1) for all α in a neighborhood of α = 0. We also require
the vector field f (2) to be locally transverse to Σ, i.e.,

(G.2) H0
x(f

(2))0 �= 0,

and the transversality of the codim 1 boundary equilibrium (BE) bifurcation, i.e.,

(G.3) H0
α �= 0,

e.g., H0
α > 0, so that x = 0 is admissible for α < 0 and virtual for α > 0.

As explained in [4], it is known that generic BE bifurcations can be classified into two sce-
narios: (a) persistence when the standard equilibrium collides with the discontinuity boundary
and turns into a pseudoequilibrium, and (b) nonsmooth-fold when the standard equilibrium
and a coexisting pseudoequilibrium collide and disappear through the bifurcation. The con-
ditions to distinguish the two scenarios (derived in [4]; see [10] for a geometric interpretation)
are

persistence: H0
x((f

(1)
x )0)−1(f (2))0 > 0,(2.2a)

nonsmooth-fold: H0
x((f

(1)
x )0)−1(f (2))0 < 0,(2.2b)

and the codim 2 bifurcation at which the left-hand side in (2.2) vanishes, called the generalized
BE, has recently been studied for n-dimensional Filippov systems in [10]. (A fold bifurcation
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between pseudoequilibria has been shown to concomitantly occur and the corresponding bi-
furcation curve emanates from the codim 2 point tangentially to the BE curve; we will come
back to this point in section 4.) Generically, we therefore have

(G.4) H0
x((f

(1)
x )0)−1(f (2))0 �= 0.

Finally, in this section, we assume that the discontinuity boundary is locally horizontal
(Hx(x, α) = [0, 1]�, i.e., S1 (S2) is below (above) the boundary), and that the vector field f (2)

is locally nonzero and orthogonal to the discontinuity boundary (i.e., vertical), so that the
state portrait in S2 is trivial, while all essential events happen on Σ and in S1. This can be
done without loss of generality thanks to the change of variables proposed in [20, section 3.1]
and fully described in Appendix A.

For simplicity of presentation, we consider only cases where sliding is stable (no escaping,
vector field f (2) points downward, i.e., H0

x(f
(2))0 < 0 in (G.2)) and rotations are counterclock-

wise. Reversing the direction of time and/or that of the x1-axis reduces all other cases to the
considered ones.

2.1. Boundary focus (BF) bifurcations. A standard focus equilibrium of the vector field
f (1) hits the discontinuity boundary Σ at α = 0. (Since the equilibrium is x = 0 for any small
|α|, it is actually the discontinuity boundary that moves with α.) Assuming stable sliding and
counterclockwise rotations nearby, there are five generic BF scenarios: BFi, i = 1, . . . , 5. The
cases are distinguished by the stability of the focus, the relative position of its zero-isoclines,
and the behavior of the orbit departing from the visible tangency point into S1. The unfoldings
of these singularities are sketched in Figure 1.

In case BF1, a stable sliding cycle L surrounds the unstable focus O for α < 0. The sliding
segment of the cycle ends at the visible tangency point T and begins at a transverse arrival
point located between T and a pseudosaddle P . The domain of attraction of this cycle is
bounded by the stable manifold of P . When α → 0, the stable cycle shrinks, while points
O, T , and P collide simultaneously. For small α > 0, there are no equilibria or cycles, and
the stable sliding orbit begins at the invisible tangency point T . This bifurcation entails the
catastrophic disappearance of a stable sliding cycle.

In case BF2, the orbit departing from the visible tangency point T for small α < 0 returns
to Σ on the right of the pseudosaddle P . Thus, no sliding cycle exists. The state portraits for
α ≥ 0 are like those in case BF1.

In case BF3, a stable sliding cycle L surrounds the unstable focus O for α < 0. Contrary
to case BF1, there is no pseudoequilibrium nearby. When α → 0, the stable cycle shrinks
and the focus collides with the tangency point T . For small α > 0, there is no cycle, and all
nearby orbits tend to a stable pseudoequilibrium P that exists close to the invisible tangency
point T . This bifurcation implies the noncatastrophic disappearance of a stable sliding cycle.

In case BF4, the focus O is stable and attracts all nearby standard and sliding orbits for
small α < 0. When α→ 0, the focus O collides with the tangency point T . The state portraits
for α ≥ 0 are like those in case BF3.

In the last case BF5, the domain of attraction of the stable focus O is bounded for α < 0
by the stable manifold of a pseudosaddle P . When α → 0, points O, T , and P collide
simultaneously. The state portraits for α ≥ 0 are like those in case BF1.
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Figure 1. Five types of generic codim 1 BF bifurcations in 2D Filippov systems: In cases BF1 and BF3

stable sliding cycles exist for nearby parameter values. The figure is adapted from [20, Fig. 5], where escaping
is considered in cases BF4 and BF5.

Note that we have the persistence BE scenario in cases BF3 and BF4, while the nonsmooth-
fold BE scenario occurs in cases BF1, BF2, and BF5.

We can now identify the codim 2 BF bifurcations at which a codim 1 bifurcation of a
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Figure 2. Two types of GR bifurcations in 2D Filippov systems (adapted from [20, Fig.14]).

sliding cycle is also involved. As shown in [10], no sliding cycle bifurcations can generically
occur at a generalized BE (the change between persistence and nonsmooth-fold), so that
all transitions between one of BF3,4 and one of BF1,2,5 are excluded. We therefore study the
transition BF1–BF2 (HBF) and the transitions BF3–BF4 and BF1–BF5 (BH in the persistence
and nonsmooth-fold BE scenarios, respectively), while the BH analysis shows that transition
BF2–BF5 is generically not possible.

2.2. Grazing bifurcation. A standard cycle in S1 touches tangentially the discontinuity
boundary Σ at α = α0 near α = 0 (recall that the equilibrium x = 0 inside the cycle hits the
boundary at α = 0). This phenomenon is called the grazing bifurcation (GR). Two generic
bifurcation scenarios GR1,2 are possible here, depending on the stability of the grazing cycle
L0. In case GR1 the cycle L0 is stable, while it is unstable in case GR2.

The unfolding of the GR1,2 singularities are presented in Figure 2 (note that, being close to
a BE bifurcation at α = 0, no other cycles are contained in L). In case GR1, there is a stable
cycle L ⊂ S1 for α < α0. Then, for α > α0, L becomes a stable sliding cycle (persistence
scenario for cycles; see [3]). In case GR2, two cycles exist for α < α0: an unstable standard
cycle Lu ⊂ S1 and a stable sliding cycle Ls. These cycles coalesce at α = α0, forming a grazing
cycle. For α > α0, no cycles exist nearby (nonsmooth-fold scenario).

Unfoldings GR1,2 refer to the persistence scenario of the BE bifurcation at α = 0. A
pseudosaddle, not involved in the grazing bifurcation at α = α0, must exist close to the
tangency point T in the BE nonsmooth-fold scenario (see point P in the panels across the
GR1,2-curves in the bottom part of Figure 6).
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Figure 3. SH bifurcation in 2D Filippov systems (adapted from [20, Fig. 19]).

2.3. Sliding homoclinic orbit to pseudosaddle. A sliding cycle L with standard segment
in S1 exists, say for α < α0 �= 0, and collides with a pseudosaddle at α = α0 (as before,
the equilibrium x = 0 inside the cycle hits the boundary at α = 0). The generic bifurcation
diagram is shown in Figure 3. The state portraits at α ≶ α0 are equivalent to those in the left
column of Figure 1, cases BF1 and BF2, while the orbit from the tangency point T reaches
the pseudosaddle P when α = α0. There is no periodic orbit for α > α0. This bifurcation
(labeled SH) is analogous to the homoclinic bifurcation to standard saddle.

3. Main results. In this section we derive our original results, namely the unfoldings of
two codim 2 bifurcations. In section 3.2 we unfold the homoclinic boundary focus (HBF),
occurring at the border between BF1 and BF2 cases described in section 2.1, while in section
3.3 we treat the boundary Hopf (BH), a focus on the discontinuity boundary with purely
imaginary eigenvalues (transitions BF3–BF4 and BF1–BF5). As in section 2, with no loss
of generality, we consider stable sliding (i.e., H0

x(f
(2))0 < 0 in (G.2)) and counterclockwise

rotations. We first present a change of variables and parameters that will be useful in the
analysis of both singularities.

3.1. A useful change of variables and parameters. As anticipated in section 2, we can
introduce new variables z = [z1, z2]

� that locally make the discontinuity boundary flat and
horizontal and the vector field f (2) constant and vertical (see [20, sect. 3.1]; details are re-
ported in Appendix A). The idea is to define a smooth parametrization z1 of the discontinuity
boundary Σ, with z1 = 0 corresponding to the intersection with Σ of the f (2)-orbit passing
through the equilibrium x = 0 of the vector field f (1) (this is possible thanks to assumption
(G.2)). For each small ‖x‖, we associate with x the z1-value at the intersection with Σ of
the f (2)-orbit through x, and let τ2(x, α) be the time taken by the orbit to go from x to Σ
(positive if x ∈ S2; negative if x ∈ S1; zero if x is on Σ). We then set z2 = τ2(x, α)− τ2(0, α),
so that x = 0 is mapped into z = 0. In this way, points x on the discontinuity boundary have
constant z2, while points along an f (2)-orbit in S2 have the same z1; i.e., the orbit is vertical
in the new variables. Moreover, as x approaches Σ, the time to reach Σ, i.e., z2, decreases
with the “speed of time,” so that ż2 = −1.

We therefore obtain the system

(3.1) ż =

{
f(z, α), z2 < −τ2(0, α),
[0, −1]� , z2 > −τ2(0, α),
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where f is nothing but the vector field f (1) in the new variables, with f(0, α) = 0. Let us
write

(3.2) f(z, α) = J(α) z +O(‖z‖2), J(α) =

[
a(α) b(α)
c(α) d(α)

]
,

where explicit expressions for functions a, b, c, d, and their α-derivatives are given in Ap-
pendix A (see (A.12) and (A.14)).

Introduce now two new parameters

(3.3) β1 = β1(α) := −τ2(0, α) and β2 = β2(α), with β02 = 0,

such that close to α = 0 the map β = β(α) is invertible, i.e., the 2 × 2 Jacobian β0α is
nonsingular. (Function β2(α) takes different forms in sections 3.2 and 3.3.) Then, β1 is the
distance of the equilibrium z = 0 from Σ (the equation of the boundary becomes z2−β1 = 0),
and the BF bifurcation curve has equation β1 = 0 (the β2-axis), with the equilibrium z = 0
admissible for β1 > 0 and virtual for β1 < 0.

3.2. Homoclinic boundary focus. The first codim 2 bifurcation that we study, HBF,
occurs at the border between cases BF1 and BF2 described in section 2.1. Here α ∈ R

2, α = 0
being the codim 2 point, and we keep assumptions (G.1)–(G.4) and the parameter-dependent
translation ensuring (2.1). Note that (G.3) now says that the codim 1 BF bifurcation curve
is well defined, locally to α = 0 in the parameter plane (α1, α2), by H(0, α) = 0 and has a
nonvanishing gradient H0

α at α = 0.
We study system (3.1) in the nonsmooth-fold BE scenario at (z, α) = (0, 0), so that we

replace (G.4) with

(HBF.4)
[
0 1

] 1

detJ0

[
d0 −b0
−c0 a0

] [
0
−1

]
= − a0

detJ0 < 0,

and we assume that z = 0 is a focus of the vector field f in (3.2) at α = 0; i.e., we assume

(HBF.5) Δ0 < 0,

where

(3.4) Δ(α) := (a(α) − d(α))2+ 4b(α) c(α).

Moreover, for the sliding to be stable, cases BF1 and BF2 require an unstable focus, and we
consider counterclockwise rotations, so that we further assume

(3.5) trJ0 = a0+ d0 > 0 and b0 < 0,

and c0 > 0 due to (HBF.5). Note that (HBF.5) also implies

(3.6) detJ0 = a0d0− b0c0 > 0,

so that (HBF.4) simply reduces to a0 > 0.
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Figure 4. Left: Construction of function ψ(z1, α). Right: Sliding homoclinic orbit to the pseudosaddle in
system (3.1). Red (blue) lines: z1 (z2)-zero-isoclines.

As a first step in the analysis, we define a smooth test function ϕ(α) that along the BF
bifurcation curve (i.e., when H(0, α) = 0) is positive in case BF1 and negative in case BF2.
Let us do this for the linearized system, namely system (3.1) with the dynamics below the
discontinuity boundary replaced by

(3.7) ż = J(α) z.

(We use an (l)-superscript to denote quantities characterizing the linearized system that have
a counterpart in the nonlinear one.) We later show that ϕ(α) is also a test function for the
full nonlinear system.

Most of the details are relegated to Appendix B.1, where we define a function ψ(z1, α)

such that ψ(B
(l)
1 (α), α) = 0 uniquely defines the value B

(l)
1 (α) of z1 at which the orbit of

system (3.7), starting at the tangency point

(3.8) T (l)(α) := [−d(α)/c(α), 1]�,
first goes back to the discontinuity boundary z2 = 1 (see Figure 4(left)), with ψ(z1, α) ≷ 0

for z1 ≷ B
(l)
1 . The choice of the boundary z2 = 1 is here arbitrary. In fact, we are interested

to know whether the orbit in Figure 4(left) returns to Σ on the left or on the right of the
pseudosaddle,

(3.9) P (l)(α) := [−b(α)/a(α), 1]�,
and considering a different boundary z2 = z̃2 would simply scale the figure (due to the linearity
of the system). Thus, the figure remains unchanged (by consistently scaling the z-axes) also
in the limit z̃2 → 0, i.e., at the BF bifurcation, where we need to evaluate our test function.

The result for the linearized system is that BF1 (BF2) is the case in which B
(l)
1 is less

(greater) than −b/a, i.e.,

(3.10) ϕ(α) := ψ(−b(α)/a(α), α)
⎧⎨
⎩

> 0, BF1,
= 0, HBF,
< 0, BF2,



DEGENERATE BOUNDARY EQUILIBRIA IN THE PLANE 1535

and we require that ϕ(α) generically change sign with nonzero slope when α moves through
α = 0 along the BF curve, i.e.,

(HBF.6) ϕ0 = 0 and 〈ϕ0
α, (H

⊥
α )0〉 �= 0,

where H⊥
α := [Hα2 ,−Hα1 ] is tangent to the BF curve (π/2-clockwise-rotated w.r.t. Hα) and

〈·, ·〉 denotes the standard scalar product in R
2.

The explicit expression for ϕ comes from Appendix B.1 (see (B.10) for the expression of
ψ) and reads

(3.11) ϕ(α) :=
ω

a+ d
log

(
− bc

a2

)
− arctan (d− a, 2ω)− π, ω :=

√−Δ

2
,

where Δ is defined in (3.4) and the α-dependence is confined in a, b, c, d, and ω, while the
α-derivatives in (HBF.6) (and later in (3.18)) can be easily computed as the derivatives of
(3.11) w.r.t. a–d and taking the α-derivatives of a–d from Appendix A (see (A.14)). Note that
on the curve ϕ(α) = 0, the linearized system has a sliding homoclinic orbit. We can therefore
expect that this happens if and only if the nonlinear system (3.1) has a sliding homoclinic
(SH) bifurcation emanating from α = 0. We now show that this is indeed the case, hence
confirming that ϕ(α) is the test function we were looking for.

Let us complete the parameter change (3.3) with

(3.12) β2 = β2(α) := ϕ(α)

and note that (HBF.6) ensures invertibility (take the second equation of (A.5) into account).
In the new variables and parameters (z, β), the SH bifurcation curve is implicitly defined

as follows (see Figure 4(right)). Let z(t) = Φ(z(0), t, α(β)) be the flow generated by the vector
field f in (3.1). Under (HBF.5) and (3.5), locally to (z, β) = (0, 0) and for β1 �= 0, the time
τ(β) needed by Φ to go from the tangency point T (β) close to z = 0 back to the discontinuity
boundary is well defined, i.e.,

(3.13) Φ2(T (β), τ(β), α(β)) = β1.

By contrast, when β1 = 0, the tangency point T coincides with the equilibrium z = 0, and τ
is undetermined. By continuity, we fix τ(β)|β1=0 at the value required by the linear system
(3.7) to go from T (l) back to the boundary z2 = 1 (see Figure 4(left)), i.e.,

(3.14)
(
exp(J(α(β)) τ(β))T (l)(α(β))

)
2

∣∣∣
β1=0

= 1.

(The 2-subscript stands for the second element; see (C.9) for an explicit formula at β = 0.)
The SH connection requires that the f -orbit starting at T go back to Σ at the pseudosaddle

P , which is a point of the z1-zero-isocline, i.e.,

(3.15) s(β) := f1(Φ(T (β), τ(β), α(β)), α(β)) = 0.

However, (3.15) has the trivial solution β1 = 0, where T coincides with z = 0 (and with P ).
This implies that the expansion of s(β) has the form

(3.16) s(β) = β1
(
s10 +

1
2 s20β1 + s11β2 +O(‖β‖2)) ,
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so that a necessary and sufficient condition for the existence of the SH bifurcation curve close
to β = 0 is that s10 = 0. In Appendix C we indeed show that this is the case if and only if
ϕ0 = 0, while generically s20 and s11 are nonzero, so that the SH curve passes through β = 0
with linear asymptotic

(3.17) 1
2 s20β1 + s11β2 � 0.

It turns out that s11 depends only on the linear term of f in (3.2) and is nonzero under
conditions (HBF.4) and (HBF.6), while s20 also depends on the quadratic terms. Thus, the
linear asymptotic (3.17) does not generically coincide with that of the SH bifurcation curve
ϕ(α) = 0 of the linearized system, but both asymptotics are transverse to the β2-axis, i.e., to
the BF bifurcation. Of course, only the branch with β1 > 0 (along which z = 0 is admissible)
corresponds to an SH bifurcation for system (3.1), while the asymptotic (3.17) in the original
α-parameter plane is simply

(3.18) (−1
2 s20τ

0
2α1

+ s11ϕ
0
α1
)α1 + (−1

2 s20τ
0
2α2

+ s11ϕ
0
α2
)α2 � 0,

where explicit expressions for τ02α and ϕ0
α in terms of the original functions H and f (1,2) can be

found in Appendix A (see the second equation of (A.5)) and following the text below (3.11),
respectively.

Close to β = 0 there are generically (i.e., under (G.1)–(G.3) and (HBF.4)–(HBF.6)) no
other bifurcations. In fact, the equilibrium z = 0 remains hyperbolic, and the BE scenario
(nonsmooth-fold) does not change (due to (HBF.4)) for small ‖β‖. Thus, there is a unique
equilibrium (z = 0) and a unique pseudoequilibrium (P ) involved in the HBF bifurcation, and
the only possible global bifurcation is the SH bifurcation that we have discussed.

In conclusion, we have proved the following result.
Theorem HBF. Suppose that for a planar Filippov system (1.1) the following assumptions

hold at α = 0:

(G.1) the vector field f (1) has a hyperbolic equilibrium at x = 0 lying on Σ, i.e., (f (1))0

= 0, H0 = 0, Reλ01,2 �= 0;

(G.2) the vector field f (2) is transverse to Σ at x = 0, i.e., H0
x(f

(2))0 �= 0;
(G.3) the BE bifurcation is locally well defined, i.e., H0

α �= 0;

(HBF.4) the BE exhibits the nonsmooth-fold scenario, i.e., H0
x((f

(1)
x )0)−1(f (2))0 < 0;

(HBF.5) x = 0 is a focus, i.e., (tr(f
(1)
x )0)2 − 4det(f

(1)
x )0 < 0;

(HBF.6) the BE changes from BF1 to BF2, i.e., ϕ
0=0 and 〈ϕ0

α, (H
⊥
α )0〉�=0 (see (3.11)).

Then, by applying a smooth and invertible transformation of coordinate and parameters,
z= z(x, α), β=β(α), system (1.1) can be reduced to the canonical form

ż =

{
J(α(β))z + fzz(0, α(β))(z, z) +O(‖z3‖), z2 < β1,
[0, −1]� , z2 > β1,

where, independently on O-terms, locally to β = 0, the β2-axis is the BE bifurcation (BF1,2 if
β2 ≷ 0), while an SH bifurcation curve emanates from β = 0 for β1 ≥ 0 with linear asymptotic
(3.17) ((3.18) in the original parameters). No other bifurcation is rooted at β = 0.
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Figure 5. HBF universal local bifurcation diagram.

The bifurcation diagram of the HBF singularity locally to β = 0 is hence that of Figure 5,
where the positive (negative) β2-axis is the BF1 (BF2) branch (due to the choice of β2 in
(3.12)), while a linear parameter change makes the SH bifurcation correspond to the positive
β1-semiaxis. The labeling of the corresponding state portraits is in accordance with Figure 1.

3.3. Boundary Hopf. The second codim 2 bifurcation that we consider, BH, occurs at
the border between cases BF3 and BF4 (in the persistence BE scenario) and BF1 and BF5

(nonsmooth-fold BE scenario) described in section 2.1. As in section 3.2, α ∈ R
2 and α = 0

is the codim 2 point. Here we keep assumptions (G.2)–(G.4), while (G.1) is replaced by

(BH.1) (f (1))0 = 0, H0 = 0, λ01,2 = ± iω0 �= 0,

where the nonsingularity of the Jacobian of f (1) at (x, α) = (0, 0) is enough to ensure (2.1).
Thus, close to α = 0, x = 0 is the equilibrium of f (1), and we let λ1,2(α) = μ(α) ± iω(α) be
the eigenvalues of f (1)(0, α), with μ0 = 0 and ω0 > 0. We further assume the transversality
and genericity of the Hopf bifurcation, i.e.,

(BH.5) μ0α �= 0 and l01 �= 0,
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respectively, where l01 is the first Lyapunov coefficient of the Hopf normal form at the bifur-
cation (see, e.g., [19, sect. 3.5]).

Under (BH.5), we can reduce the vector field f (1) to Hopf normal form (through smooth
and invertible changes of variables and parameters and time reparametrization). We can
therefore study the system

(3.19) ẏ =

⎧⎨
⎩
[
β2 −1

1 β2

]
y + l1(β)‖y‖2y +O(‖y‖4), y2 < β1(1 +O(‖β‖)) +O(‖y‖2),

v(β) +O(‖y‖), y2 > β1(1 +O(‖β‖)) +O(‖y‖2),

where y = y(x, α) is the change of variables (x(y, α) being the inverse transformation),

(3.20) β2(α) := μ(α)/ω(α)

completes the parameter change (3.3), and the dot notation now stands for the time-derivative
w.r.t. the new time (β-dependence of O-terms is not indicated for simplicity).

Note that, unlike in (3.1), in (3.19) we no longer have a flat discontinuity boundary
orthogonal to the f (2)-orbits, since f (1) is reduced to Hopf normal form. The best we can
do is rotate the axes to make horizontal the linear part of the boundary, because the Hopf
normal form is invariant under rotations, but we cannot eliminate the quadratic terms in
the boundary expansion, nor the linear terms in the f (2) expansion. Neither can we assume
v0 = v(0) to be vertical, since writing (G.4) in the new variables, we get

[
0 1

] [ 0 1
−1 0

]
v0 = −v01 �= 0.

A vertical v0 would lead to a further degeneracy (generalized BE, the change between per-
sistence and nonsmooth-fold). Obviously, we also cannot have v0 horizontal, since this would
violate (G.2).

As for the new parameters, we already discussed in section 3.1 that the choice of β1 in
(3.3) makes β1 = 0 (the β2-axis) identify the BF bifurcation, while β2 in (3.20) is the unfolding
parameter of the (one-parameter) Hopf normal form; i.e., β2 = 0 (the β1-axis) is the Hopf
bifurcation. Of course, we require the invertibility of the parameter change, i.e.,

(BH.6) 〈(H⊥
α )0, μ0α〉 �= 0

(where H⊥
α := [Hα2 ,−Hα1 ] and the second equation of (A.5) has been used); namely, we

assume that the BF and Hopf bifurcation curve transversally intersect at α = 0 in the α-
parameter plane.

Conditions (BH.1), (G.2)–(G.4), (BH.5), and (BH.6) characterize a generic BH bifurcation.
As mentioned in the introduction, two simple Filippov systems have already been proposed
to unfold the BH bifurcation [5, 15]. In [5], however, a vertical v0 is assumed in (3.19),
so that a generalized BE bifurcation concomitantly occurs. Indeed, as expected from the
unfolding in [10], a fold bifurcation curve between pseudoequilibria emanates from the BH
point tangentially to the BF curve (see Figure 5 in [5]). In contrast, the unfolding of the BH
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bifurcation in [15] is generic, but considers only the persistence BE scenario. Moreover, no
explicit means to compute the coefficients of the proposed canonical form is provided.

We now study the bifurcations of system (3.19) locally to β = 0. Besides the BF and
Hopf bifurcations, there are generically no other local bifurcations. In contrast there are two
candidate global bifurcations. The first is the grazing (GR) of the limit cycle originating
through the Hopf bifurcation. The second possibility one can imagine in the nonsmooth-fold
BE scenario (see (2.2)) is the SH bifurcation occurring when the tangency point close to y = 0
is connected with the pseudosaddle colliding with y = 0 at the BF. This is, however, generically
not possible. In fact, by changing variables from x to z as described in section 3.1, we can
consider system (1.1) in the form (3.1) (with the vector field f not in Hopf normal form).
Then, it is trivial to verify (see the details in Appendix B.2) that close to the BH (α = 0) the
SH orbit cannot exist in the linearized system (3.7) (see Figure 4(left)), as the orbit starting
at the tangency point T (l) comes back to T (l) itself (the linear system is a center). This also
shows that the transition BF2–BF5 is generically not possible, as anticipated in section 2.1.

As for the GR bifurcation, the cycle exists for β2 > 0 (β2 < 0) (and is stable (unstable)) if
the Hopf is super(sub)-critical (negative (positive) l01 in (BH.5)) and is geometrically a circle
of radius

√
−β2/l01 +O(β2) (where O(β2)-terms are smooth functions of β1). Let σ(β) be the

distance of the equilibrium y = 0 from the discontinuity boundary, with positive (negative)
values if H(0, α(β)) is negative (positive), in order to make σ(β) differentiable at β = 0.
Thanks to (G.1), (G.3), and to our choice of β1, we can write σ as

(3.21) σ(β) = σ0β1
β1 +O(‖β‖2),

where σ0β1
is computed in Appendix D and shown to be generically nonzero (see (D.5)).

The asymptotic of the GR bifurcation curve (GR1 (GR2) if l
0
1 < 0 (l01 > 0) in (BH.5)) is

obtained by equating the radius of the cycle with the distance σ and by eliminating nonleading
terms, i.e.,

(3.22)
√

−β2/l01 � σ0β1
β1.

The GR curve hence emanates from β = 0 tangentially to the β1-axis (the Hopf curve) with
positive β1 (the equilibrium y = 0 is admissible) and positive −β2/l01.

A quadratic asymptotic in the original α-parameter plane requires the expansion of the
parameter change (3.3) and (3.20) up to second-order terms, and reads

(3.23) 0 � β02α1

l01
α1 +

β02α2

l01
α2

+

(
(σ0β1

β01α1
)2+

β02α2
1

2l01

)
α2
1 +

(
2(σ0β1

)2β01α1
β01α2

+
β02α1α2

l01

)
α1α2 +

(
(σ0β1

β01α2
)2+

β02α2
2

2l01

)
α2
2,

where β01α = −τ02α and β02α = μ0α/ω
0 (see the second equation of (A.5) for an explicit expression

for τ02α).
In conclusion, we have proved the following result.
Theorem BH. Suppose that for a planar Filippov system (1.1) the following assumptions

hold at α = 0:
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(BH.1) the vector field f (1) has an equilibrium at x = 0 lying on Σ and having purely

imaginary eigenvalues, i.e., (f (1))0 = 0, H0 = 0, Reλ01,2 = ±iω �= 0;

(G.2) the vector field f (2) is transverse to Σ at x = 0, i.e., H0
x(f

(2))0 �= 0;
(G.3) the BE bifurcation is locally well defined, i.e., H0

α �= 0;

(G.4) the BE exhibits a generic scenario, i.e., H0
x((f

(1)
x )0)−1(f (2))0 �= 0;

(BH.5) the Hopf bifurcation is locally well defined and generic, i.e., μ0α �= 0 and l01 �= 0;
(BH.6) the Hopf and BE bifurcation curves are transversal, i.e., 〈(H⊥

α )0, μ0α〉 �= 0.
Then, by applying a smooth and invertible transformation of coordinate and parameters,

y = y(x, α) and β = β(α), and a time reparametrization, system (1.1) can be reduced to the
canonical form

ẏ =

⎧⎨
⎩
[
β2 −1

1 β2

]
y + l1(β)‖y‖2y +O(‖y4‖), y2 < β1(1 +O(‖β‖)) +O(‖y2‖),

v(β) +O(‖y‖), y2 > β1(1 +O(‖β‖)) +O(‖y2‖),
where, independently on O-terms, locally to β = 0, the β2-axis is the BE bifurcation, the
positive β1-semiaxis is the Hopf bifurcation, and a grazing bifurcation emanates from β = 0
tangentially to the Hopf with asymptotic (3.22) ((3.23) in the original parameters). No other
bifurcation is rooted at β = 0.

The bifurcation diagrams of the BH singularity locally to β = 0 are reported in Figure 6.
Generically, there are four cases, depending on whether the Hopf bifurcation is super- or sub-
critical (l01 ≶ 0 in (BH.5), left/right panels in the figure) and on the BE scenario, persistence
or nonsmooth-fold (positive/negative sign in (G.4), top/bottom). For uniformity with the
rest of the paper, the state portraits are presented with reference to the canonical form (3.1),
where the vector field f is not in Hopf normal form.

4. Example: On-off harvesting control of a prey-predator ecosystem. We apply our
results to the 2D ecological example studied in [20] (see also [11]). It describes a two-population
community, a prey and a predator with densities x1 and x2, respectively, where the predator
population is harvested only when abundant, i.e., when x2 > α, α being a prescribed threshold.

The system’s equations are

ẋ1 = x1(1− x1)− ax1
b+ x1

x2,(4.1a)

ẋ2 =
ax1
b+ x1

x2 − dx2,(4.1b)

in S1, where x2 < α (the prey grows logistically in the absence of predators; predation rate
follows the Holling type-II functional response—the Rosenzweig–MacArthur model—see, e.g.,
[23]), while an extra mortality term −Ex2 due to harvesting is added to (4.1b) in S2.

The bifurcation analysis of model (4.1) performed in [20] was limited to codim 1 bifur-
cations, but revealed several codim 2 points as intersections or terminating points of codim
1 bifurcation curves. In particular, the HBF and BH singularities are both identifiable in
the parameter plane (α, b) (see points B and A in Figure 29 in [20]; other parameter values:
a = 0.3556, d = 0.04444, E = 0.2067). We now apply the results of sections 3.2 and 3.3 locally
to the HBF and BH bifurcations, with parameters (α, b) playing the role of (α1, α2).
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Figure 6. BH universal local bifurcation diagrams (top (bottom): persistence (nonsmooth-fold) BE scenario;
left (right): super(sub)-critical Hopf).

Table 1 reports the parameter values (α0, b0) of the codim 2 point, the coordinates x0

of the corresponding boundary equilibria, the values of the genericity conditions, and the
bifurcation asymptotics; see the first two columns for the HBF and BH bifurcations found in
[20]. Note that condition (G.4) is not satisfied, so that the BH case is degenerate. A change
of BE scenario, from persistence to nonsmooth-fold (generalized BE; see [10]), occurs together
with the BH; see (2.2). Although the asymptotic (3.23) remains valid, a fold bifurcation
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Table 1
Numerical analysis of the HBF and BH bifurcations in model (4.1). The ∗-superscript refers to the modified

model with parameter p = 0.1.

HBF BH BH∗

(α0, b0) (0.9754, 0.3179) (2.2225, 0.7780) (2.2336, 0.7780)
x0 (0.0454, 0.9753) (0.1109, 2.2225) (0.1110, 2.2225)

(G.1) / (BH.1) 0, 0, (0.0369, 0.0369) (0, 0,±0.1859i) (0, 0,±0.1859i)
(G.2) −0.2016 −0.4594 −0.4595
(G.3) (−1, 2.9219) (−1, 2.5) (−1, 2.5143)

(G.4) / (HBF.4) −0.4013 0 −0.0591
(HBF.5) / (BH.5) −0.1430 ((0, −0.0802), −0.1633) ((0, −0.0802), −0.1633)
(HBF.6) / (BH.6) (0, 21.8495) −0.0802 −0.0802

SH and GR asymptotics

SH: α1 − 3.8590 α2 � 0
GR: 1.2507α2 + α2

1 − 5α1α2 + 13.7982α2
2 � 0

GR∗: 1.2514α2 + α2
1 − 5.0286α1α2 + 13.8741α2

2 � 0

0.96 0.9754 1.02
0.31

0.3179

0.33

BF1

BF2

HBF

α

b

SH

2.2 2.2336 2.3
0.77

0.778

0.78

α

b

BH

GR

BF1

BF5

H

Figure 7. Local bifurcation diagrams. Left: HBF bifurcation in the original model (4.1); right: BH bifur-
cation in the modified model (parameter p = 0.1). Black dashed curves: SH (left) and GR (right) asymptotics;
see (3.18) and (3.23), respectively.

between pseudoequilibria also emanates from the BH point tangentially to the BF curve (see
curve PSN emanating from point A in Figure 29 in [20]), as indeed expected at a generalized
BE [10].

In order to have a generic BH bifurcation, we have tilted the discontinuity boundary by
considering system (4.1) when x2 < α−px1, p = 0.1 being a new parameter. This corresponds
to a harvesting threshold that decreases with the prey abundance (up to zero, and remains zero
for prey abundances higher than α/p). The last column in Table 1 reports the results of the
generic BH bifurcation, and Figure 7 shows the two local bifurcation diagrams corresponding to
the HBF case in the original model (left) and to the generic BH case (right). The asymptotics
(3.18) and (3.23) are also reported (black dashed curves).
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Figure 8. The change of variables z = z(x,α).

All the results in Table 1 have been computed with the two Mathematica scripts accom-
panying the paper (see 81254 01.zip [local/web 30.1KB]). By simply changing the system’s
definition and the values of the boundary equilibrium and of the parameters, the scripts can
be reused on other systems. The bifurcation curves in Figure 7 have been computed with the
package SlideCont [12].

Appendix A. The transformation z = z(x,α) reducing (1.1) to (3.1).

A.1. The transformation. Consider system (1.1) for (x, α) close to a BE bifurcation of
the vector field f (1) at (x, α) = (0, 0), and assume (G.1), (G.2), and the parameter-dependent
translation ensuring (2.1).

Let x(t) = Φ(2)(x(0), t, α) be the flow generated by the vector field f (2). Under (G.2),
locally to (x, α) = (0, 0), the time τ2(x, α) needed by Φ(2) to go from x to the discontinuity
boundary Σ is implicitly defined by

(A.1) H(Φ(2)(x, τ2(x, α), α), α) = 0.

Note that τ2(x, α) = 0 when x is on Σ and that, when sliding is stable (i.e., H0
x(f

(2))0 < 0 in
(G.2)), τ2(x, α) is positive (negative) when x ∈ S2 (S1).

Let
x(Σ)(x, α) = Φ(2)(x, τ2(x, α), α) and O(Σ)(α) = Φ(2)(0, τ2(0, α), α),

and introduce the new variables z1 and z2 as follows (see Figure 8):

z1 = z1(x, α) := 〈H⊥
x (O(Σ)(α), α), x(Σ)(x, α) −O(Σ)(α)〉,(A.2a)

z2 = z2(x, α) := τ2(x, α) − τ2(0, α).(A.2b)

The variable change (A.2) maps x = 0 into z = 0 for any small ‖α‖ and is invertible close to
(x, α) = (0, 0). In fact, z1 is a local coordinate on Σ, with origin at O(Σ) and positive direction

81254_01.zip
http://link.aip.org/mm/SJADAY/100812549/81254_01.zip
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along H⊥
x , so that locally to (z1, α) = (0, 0) the vector x(Σ)(x, α)−O(Σ)(α) (red in the figure)

is a smooth function of z1 and α, say χ(z1, α), and we can write

z−1(z, α) = x(z, α) = Φ(2)(O(Σ)(α) + χ(z1, α),−(z2 + τ2(0, α)), α).

Note that if also
z0 = 〈Hx(O

(Σ)(α), α), x(Σ)(x, α)−O(Σ)(α)〉
is stored together with z1 and z2, then the function χ can be computed as

χ(z1, α) =

[
Hx(O

(Σ)(α), α)

H⊥
x (O(Σ)(α), α)

]−1 [
z0
z1

]
.

When x is on Σ, the equation of the discontinuity boundary in the new variables is simply
z2 = −τ2(0, α) (i.e., the boundary is flat and horizontal, while z is above (below) the boundary
when x ∈ S2 (S1)).

When x ∈ S2, all points of the f (2)-orbit starting at x reach the same point on Σ and
therefore give the same value for z1; i.e., the new vector field in S2 is vertical. Moreover, it
obviously results in

(A.3) ż2 = τ2x(x, α) f
(2)(x, α) = −1,

since the time to reach Σ along the f (2)-orbit (i.e., z2 + τ2(0, α); see (A.2b)) reduces by one
unit in a unit of time. In formulas, by differentiating (A.1) w.r.t. x, we get

τ2x(x, α) = −Hx(x
(Σ)(x, α), α)Φ(2)

x (x, τ2(x, α), α)

Hx(x
(Σ)(x, α), α)f (2)(x(Σ)(x, α), α)

,

where the product Φ
(2)
x (x, τ2(x, α), α) f

(2)(x, α) in (A.3) is nothing but f (2)(x(Σ)(x, α), α) (the
first-order perturbation of the orbit’s terminal point x(Σ)(x, α) induced by perturbing the
initial state x by f (2)(x, α)). In conclusion, we have ż = [0, −1]� for z ∈ S2.

When x ∈ S1,

(A.4) ż = f(z, α) := zx(x(z, α), α)f
(1)(x(z, α), α),

which defines the function f introduced in system (3.1).
Note that a similar change of variables can be defined for n-dimensional Filippov systems,

provided that (z1, . . . , zn−1) define coordinates on Σ locally to O(Σ) (e.g., the scalar products
with a base on the linear manifold tangent to Σ at O(Σ)).

A.2. Useful derivatives. We now compute a few derivatives that are needed throughout
the paper. They are evaluated at x = 0 on the BE bifurcation curve (i.e., when H(0, α) = 0)
if the argument α is present, or at (x, α) = (0, 0) when the 0-superscript is used.

We start with function τ2. From (A.1) it easily follows that

(A.5) τ2x(0, α) = − Hx(0, α)

Hx(0, α)f
(2)(0, α)

, τ2α(0, α) = − Hα(0, α)

Hx(0, α)f
(2)(0, α)

,
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τ02xx1,2
=−

(
H0

xx1,2

(
I + (f (2))0τ02x

)
+ H0

x

(
(f (2)x )0τ02x1,2

+ (f (2)x1,2
)0τ02x + (f (2)x )0(f (2))0τ02xτ

0
2x1,2

))/(
H0

x(f
(2))0

)
,(A.6)

and

(A.7) τ02xα1,2
= − H0

xα1,2

H0
x(f

(2))0
+

H0
x

(H0
x(f

(2))0)2

(
H0

xα1,2
(f (2))0 +H0

x(f
(2)
α1,2

)0
)
,

where Hx and τ2x are (as usual) treated as row vectors and the denominators are nonzero for
small ‖α‖ thanks to (G.2).

As for the change of variables z = z(x, α), from (A.2) we have

(A.8) zx(0, α) =

[
H⊥

x (0, α)
(
I + f (2)(0, α)τ2x(0, α)

)
τ2x(0, α)

]
,

(A.9)

z0xx1,2
=

⎡
⎢⎣
2(H⊥

x )0x1,2

(
I + (f (2))0τ02x

)
+(H⊥

x )0
(
(f

(2)
x )0τ02x1,2

+ (f
(2)
x1,2)

0τ02x + (f
(2)
x )0(f (2))0τ02xτ

0
2x1,2

+ (f (2))0τ02xx1,2

)
τ02xx1,2

⎤
⎥⎦ ,

(A.10) z0xα1,2
=

[
(H⊥

x )0α1,2

(
I + (f (2))0τ02x

)
+ (H⊥

x )0
(
(f

(2)
α1,2)

0τ02x + (f (2))0τ02x

)
τ02xα1,2

]
,

while by differentiating the identity z(x(z, α), α) = z, we get

(A.11) xz(0, α) = zx(0, α)
−1, x0zα1,2

=−(z0x)
−1z0xα1,2

(z0x)
−1, x0zz1,2=−(z0x)

−1z0xx

(
z0x1,2

, z0x

)
,

where the bilinear operator zxx can easily be obtained from (A.9).
Finally, the Jacobian of f at z = 0 introduced in (3.2) is given by

(A.12) fz(0, α) = J(α) = zx(0, α)f
(1)
x (0, α)(zx(0, α))

−1, with J0 = z0x(f
(1)
x )0x0z,

while the second derivatives are

(A.13)
f0zz1,2 = z0xx

(
x0z, (f

(1)
x )0x0z1,2

)
+ z0xx

(
x0z1,2 , (f

(1)
x )0x0z

)
+ z0x(f

(1)
xx )0

(
x0z1,2 , x

0
z

)
+ z0x(f

(1)
x )0x0zz1,2

and

(A.14) f0zα1,2
= J0

α1,2
= z0xα1,2

(f (1)x )0x0z + z0x(f
(1)
xα1,2

)0x0z + z0x(f
(1)
x )0x0zα1,2

,

where (A.11) must be taken into account.
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z1

z1

z2

T (l) P (l) B(l)

u1

u2

u2

u3

u3

uπ/2

uv

O

1

−1

u

−b/a

−b/a

−d/c

−d/c

ϕ
2

ϕ1

0

0

π

2π

Figure 9. Construction of function ψ(z1, α) in (3.10).

Appendix B. Derivation of the function ψ in (3.10).

B.1. The case a+ d �= 0. Consider the linear system (3.7), and replace z1 with the new
variable u measuring the slope of vector z w.r.t. axis z2, i.e., z1 = u z2; see the left panel in
Figure 9 (this trick is taken from [14, p. 246]). Then, we have

(B.1)
ż1
ż2

=
au+ b

cu+ d
= u̇

z2
ż2

+ u,

which is solvable in the variables (u, z2) by separation and yields

(B.2) −1

2
log | − cu2 + (a− d)u+ b|+ a+ d

2ω

(
arctan

(−2cu+ a− d

2ω

)
+ kπ

)
= log |z2|+C,

where ω =
√−Δ/2 (Δ = (a−d)2+4b c is defined in (3.4)), k = 0,±1,±2, . . . identifies smooth

pieces of the solution with u → ±∞ corresponding to z1 → u sign z2, and C is an arbitrarily
constant. In order to consider all pieces as a whole, we apply (after some algebra) the tan
function on both sides of (B.2) and get

(B.3) tan

(
ω

a+ d
log
(
z22 | − cu2 + (a− d)u+ b|C ′)) =

−2cu+ a− d

2ω
,

where C ′ is a different constant, set by the initial condition

(B.4) z1(0) = u(0) = −d/c, z2(0) = 1,

i.e.,

(B.5) tan

(
ω

a+ d
log

(∣∣∣∣−adc + b

∣∣∣∣C ′
))

=
a+ d

2ω
.
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In order to eliminate C ′, let us write (B.3) as

tan

(
ω

a+ d
log

(∣∣∣∣−adc + b

∣∣∣∣C ′
)
+

ω

a+ d
log

(
z22

−cu2 + (a− d)u+ b

−ad/c+ b

))
=

−2cu+ a− d

2ω
,

where the absolute value in the second log has been removed because, under (HBF.5) and
(3.5), the argument is a positive upward parabola in u: the numerator is a downward parabola
with vertex at

(B.6) u = uv := (a− d)/2c, with uv − (−d/c) = (a+ d)/(2c) > 0,

and negative maximum (a − d)2/4c + b, and the denominator is constant and negative; see
(3.6). Now, exploiting (B.5) and that tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2), we
get, after some algebra,

(B.7) tan

(
ω

a+ d
log

(
z22

−cu2 + (a− d)u+ b

−ad/c+ b

))
=

2ω(cu+ d)

c(a+ d)u+ 2bc− d(a− d)
.

We are interested in the solutions of (B.7) with z2 = 1 (return to the discontinuity bound-
ary), so we can set z1 = u, and we like to distinguish among different return points, so we go
back to the arctan formulation and define

(B.8)
ψk(z1, α) :=

ω

a+ d
log

(−cz21 + (a− d)z1 + b

−ad/c + b

)
− arctan (c(a+ d)z1 + 2bc− d(a− d), 2ω(cz1 + d))− kπ,

where the two-argument arctan(p1, p2) (often called atan2) gives here the angle of point (p1, p2)
in (−π, π], and the α-dependence is confined in a, b, c, d, and ω. Note that due to (HBF.5)
and (3.5), the p1,2-arguments in (B.8) are both linearly increasing with z1, p1 starting from a
negative value (−2detJ) at z1 = −d/c and changing sign at

(B.9) z1 = uπ/2 := (d(a− d)− 2bc)/c(a + d), with uπ/2 − uv = −Δ/(2c trJ) > 0,

while p2 vanishes at z1 = −d/c. Hence, the two-argument arctan avoids the π-jump of the
standard arctan at z1 = uπ/2, where arctan(0, p2) with p2 > 0 is continuous and gives π/2.

We now study the solutions z̃1 such that ψk(z̃1, α) = 0 for some k and show that z̃1 =

B
(l)
1 (α) (the z1-value of the first return point B(l)(α) to the boundary z2 = 1 of the orbit of

system (3.7) starting at (B.4); see Figure 9(left)) is the only solution for k = 1 and z1 ≥ −d/c.
We therefore conclude that function ψ in (3.10) is defined by

(B.10) ψ(z1, α) := ψ1(z1, α), z1 ≥ −d/c.
The following is a sketch of the proof. We study the graphs of

ϕ1(z1, α) :=
ω

a+ d
log

(−cz21 + (a− d)z1 + b

−ad/c+ b

)
and

ϕ2(z1, α) := arctan (c(a+ d)z1 + 2bc − d(a− d), 2ω(cz1 + d))− π,

where
ψk(z1, α) = ϕ1(z1, α) − (ϕ2(z1, α) + (k + 1)π).
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1. Due to the z22-term in (B.3), values z̃1 corresponding to points (z̃1,−1) of the orbit of
system (3.7) starting at (B.4) are also solutions, as well as z̃1 corresponding to points
(z̃1,±1) of the orbit starting at z1(0) = d/c, z2(0) = −1 (see the green and black
dots in Figure 9(left)). However, each solution corresponding to a point with z2 = −1
matches a solution (of the other orbit) where z2 = 1 (see the dashed segment in the
figure), so we can consider only solutions corresponding to points of both orbits with
z2 = 1 (green dots), where indeed we can substitute u with z1.

2. From Figure 9(left), it is clear that B
(l)
1 (α) corresponds to the third solution z̃1 en-

countered by considering any k and increasing z1 starting from z1 = −d/c.
3. ϕ1(−d/c, α) = ϕ2(−d/c, α) = 0, so that z̃1 = −d/c is a solution for k = −1.
4. ϕ1z1(z1, α) = ω

a+d
−2cz1+a−d

−cz21+(a−d)z1+b
, ϕ2z1(z1, α) = ω

−cz21+(a−d)z1+b
, and also ϕ1z1(−d/c, α) =

ϕ2z1(−d/c, α) = −cω/detJ < 0 (due to equations (HBF.5) and (3.5)). Moreover,
ϕ1z1(−d/c, α)/ϕ2z1 (−d/c, α) = (−2cz1 + a − d)/(a + d) linearly goes from 1 to 0 for
z1 from = −d/c to uv (see (B.6)). Thus, ϕ1,2 both decrease for z1 ∈ [−d/c, uv ], but
ϕ1 stays above ϕ2 (see Figure 9(right)), so there are no other solutions for k = −1 in
[−d/c, uv ].

5. For z1 > uv, ϕ1 is increasing, while ϕ2 continues to decrease and tends to arctan(c(a+
d), 2ωc) − π as z1 → ∞, so z̃1 = −d/c is the only solution for k = −1.

6. For k �= −1, there are no solutions in [−d/c, uv ]. In fact, since uv < uπ/2 (see (B.9)),
we have 0 ≥ ϕ1 ≥ ϕ2 > −π/2, i.e., ϕ1 ∈ (−π/2, 0], while ϕ2 + (k + 1)π ∈ ((k + 1)π −
π/2, (k + 1)π].

7. For k < −1, there is no solution for z1 > uv, as ϕ1 stays above ϕ2 (see Figure 9(right)).
8. For k > −1, there is a unique solution for z1 > uv, as ϕ1(uv, α) < ϕ2(uv, α)+(k+1)π,
ϕ1 is increasing, and ϕ2 is decreasing (see Figure 9(right)), so that (B.10) follows from
point 2 above.

Finally, note that the test function (3.11) holds true also in the case of clockwise rotations
(b0 > 0 and c0 < 0). Although a few details do change in the derivation (i.e., u < −d/c is the
interval of interest, ψ(z1, α) is positive (negative) for z1 smaller (larger) than B

(l)
1 , and BF1

(BF2) is the case in which B
(l)
1 is greater (less) than −b/a), the final result does not depend

on b and c independently, but only on their product.

B.2. The case a+ d = 0. At a Hopf bifurcation, the solution (B.7) of (B.1) degenerates
into

(B.11) log

(
z22

−cu2 + (a− d)u+ b

−ad/c+ b

)
= 0.

Setting z2 = 1 (return to the discontinuity boundary from initial condition (B.4)), there is
a unique solution at u = −d/c. (As discussed in section B.1, the log-argument is a positive
upward parabola that, in the case a + d = 0, has the vertex at u = uv := −d/c (see (B.6))
and minimum value equal to 1.) Indeed, the linear system (3.7) is a center, and the elliptical
orbit through (B.4) grazes the boundary z2 = 1 exactly at (B.4). Thus, we simply have
ψ(z1, α) = z1 + d(α)/c(α), i.e., B(l)(α) = −d(α)/c(α).
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Appendix C. Computation of s10, s20, and s11 in (3.16).

C.1. Computation of s10. From definition (3.15) it follows that

(C.1) sβ1 = f1z(ΦzTβ1 +Φtτβ1 +Φααβ1) + f1ααβ1 ,

where arguments are omitted for simplicity.
In order to evaluate (C.1) at β = 0, note that

(C.2) Φ0
z = exp(J0τ0), Φ0

t = f0 = 0, Φ0
α = 0, f01α = 0

(due to (2.1)), that at the HBF bifurcation

exp(J0τ0)

[−d0/c0
1

]
=

[−b0/a0
1

]

(the orbit of the linear system (3.7) starting at T (l) goes back in time τ0 to the boundary Σ
at P (l); see (3.8), (3.9), (3.14), and Figure 4(left)), and that from the definition

(C.3) T (β) := [T1(β), β1]
�, f2(T (β), α(β)) = 0,

it follows that

(C.4) T 0
β1

= [−d0/c0, 1]�

(here we use the 0-superscript also for evaluation at (z, t, β) = (0, τ0, 0)).
Then, from (C.1) we find

s10 = s0β1
= [a0, b0][−b0/a0, 1]� = 0.

C.2. Computation of s20. Taking the derivative of (C.1) w.r.t. β1, evaluating at β = 0,
and taking into account (C.2)–(C.4) and

(C.5) Φ0
zt = J0 exp(J0τ0), Φ0

tt = Φ0
tα = Φ0

α2 = 0, f01α2 = 0,

we get
(C.6)

s20 = s0
β2
1
= f01zz

([−b0/a0
1

]
,

[−b0/a0
1

])
+ 2[a0αα

0
β1
, b0αα

0
β1
]

[−b0/a0
1

]
+ [a0, b0]

×
(
Φ0
zz

([−d0/c0
1

]
,

[−d0/c0
1

])
+2J0

[−b0/a0
1

]
τ0β1

+2Φ0
zαα

0
β1

[−d0/c0
1

]
+exp(J0τ0)T 0

β2
1

)
,

where

(C.7) α0
β = [α0

β1
, α0

β2
] = (β0α)

−1 =
1

−τ02α1
ϕ0
α2

+ τ02α2
ϕ0
α1

[
ϕ0
α2

τ02α2

−ϕ0
α1

−τ02α1

]

from (3.3),

Φ0
zz(·, ·) =

∫ τ0

0
exp(J0(τ0 − t)) f0zz

(
exp(J0t)(·), exp(J0t)(·))dt
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(by Picard iterations; see, e.g., [19, sect. 9.5.1]), and

Φ0
zα1,2

=

∫ τ0

0
exp(J0(τ0 − t))J0

α1,2
exp(J0t)dt

(see, e.g., [1, sect. 10.14]), while from (C.3) we get

T 0
1β2

1
= − 1

c0
f02zz

([−d0/c0
1

]
,

[−d0/c0
1

])
− 2

c0d0α− c0αd
0

(c0)2
α0
β1
, T 0

2β2
1
= 0.

(Expressions for fzz, τ
0
2α, and for the elements a0α, b

0
α, c

0
α, d

0
α of J0

α can be found in Ap-
pendix A.2, while the α-derivatives of ϕ can be obtained from the derivatives of ϕ w.r.t. a–d
and from a0α–d

0
α.)

As for τ0β1
, we need to take the second β1-derivative of the definition (3.13). In fact,

evaluating the first derivative

(C.8) (ΦzTβ1 +Φtτβ1 +Φααβ1)2 = 1

at β = 0 simply gives 1 = 1, while one further differentiation gives

τβ1 =
1

b0c0/a0− d0

(
Φ0
zz

([−d0/c0
1

]
,

[−d0/c0
1

])
+2Φ0

zαα
0
β1

[−d0/c0
1

]
+exp(J0τ0)T 0

β2
1

)
2

.

What we still need to evaluate (C.6) is an explicit formula for τ0. For this we need
to consider the coordinates y of z in the real eigenbasis of J0, i.e., y = Q0z with (Q0)−1 =
[Re q0, −Im q0], q0 being a complex eigenvector of J0 associated to eigenvalue (a0+d0)/2+iω0,
e.g., q0 = [(a0 − d0)/(2c0), 1]� + i[ω0/c0, 0]�. In the new coordinates, the flow generated by
the linear system (3.7) at α = 0 rotates counterclockwise at constant angular velocity ω0, so
that, at the HBF bifurcation, τ0 is the angle spanned by the starting and end points Q0(T (l))0

and Q0(P (l))0 (see (3.8) and (3.9)) divided by ω0, i.e.,

(C.9) τ0 :=
1

ω0

⎛
⎝2π − arccos

⎛
⎝ 〈Q0(T (l))0, Q0(P (l))0〉√

〈Q0(T (l))0, Q0(T (l))0〉〈Q0(P (l))0, Q0(P (l))0〉

⎞
⎠
⎞
⎠ .

C.3. Computation of s11. Taking the derivative of (C.1) w.r.t. β2, evaluating at β = 0,
and taking into account (C.2)–(C.5) and that T 0

β2
= 0 (easy to check from (C.3)), we get

(C.10)

s11 = s0β1β2
= [a0αα

0
β2
, b0αα

0
β2
]

[−b0/a0
1

]

+ [a0, b0]

(
J0

[−b0/a0
1

]
τ0β2

+Φ0
zαα

0
β2

[−d0/c0
1

]
+exp(J0τ0)T 0

β1β2

)
,

where, from (C.3), we have

T 0
1β1β2

= −c
0d0α− c0αd

0

(c0)2
α0
β2
, T 0

2β1β2
= 0,
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and α0
β2

is the first column in (C.7).

Instead of computing τ0β2
directly, taking the β2-derivative of (C.8), we note that near

β = 0 we can write

(C.11) exp(J(α(β))τ(β))

[−d(α(β))/c(α(β))
1

]
=

[
B

(l)
1 (α(β)) + β1ζ1(β)

1 + β1ζ2(β)

]

for some smooth function ζ(β) accounting for the fact that, when β1 �= 0, τ is different from
the time τ (l) required by the linear system (3.7) to go from T (l) back to the boundary z2 = 1

at z1 = B
(l)
1 . Then, by taking the derivative of (C.11) w.r.t. β2 at β = 0, and recalling from

Appendix B.1 that ψ(B
(l)
1 (α), α) = 0, we obtain an explicit expression for the terms involving

τ0β2
and Φ0

zα in (C.10), i.e.,

J0

[−b0/a0
1

]
τ0β2

+Φ0
zαα

0
β2

[−d0/c0
1

]
(C.12)

= exp(J0τ0)

[
(c0d0α−c0αd0)α0

β2
/(c0)2

0

]
+

[−ψ0
αα

0
β2
/ψ0

z1

0

]

(expressions for ψ0
z1 and ψ0

α can be obtained from Appendix B.1). Substituting (C.12) into
(C.10), we finally get

(C.13) s11 = [a0αα
0
β2
, b0αα

0
β2
]

[−b0/a0
1

]
+ [a0, b0]

[−ψ0
αα

0
β2
/ψ0

z1

0

]
.

Expression (C.13) links s11 to our test function ϕ (defined in (3.10) and derived in Ap-
pendix B.1). Straightforward algebra indeed yields

s11 = − a0

ψ0
z1

ϕ0
αα

0
β2
,

which shows how genericity conditions (HBF.4) (i.e., a0 > 0) and (HBF.6) imply s11 �= 0.
(ψ0

z1 �= 0 follows from the smoothness of ϕ.)

Appendix D. Computation of σ0
β1

in (3.21). Here we follow the approach introduced in
[8] to study the grazing of an invariant curve close to a Border–Neimark–Sacker bifurcation
in discrete time.

Introduce the complex variable w = y1 + iy2 used in [19, sect. 3.5] to describe the Hopf
normal form, and write the inverse change of variables as x = x(w, w̄, α) (the overbar stands
for complex conjugation). From the normal form reduction, it follows that

(D.1) x0w = q0, x0w̄ = q̄0,

where q0 is the complex eigenvector of (f
(1)
x )0 associated with eigenvalue +iω0, while (2.1)

implies

(D.2) x0α = 0.
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Then, due to (G.2) we have

(D.3) H0
y = H0

xx
0
y = 2H0

x

[
Re q0, −Im q0

] �= 0,

and we can define the angle of vector H0
y as

(D.4) θ0 := arctan(H0
y1 ,H

0
y2)

(using the two-argument arctan in (−π, π]).
For θ in a neighborhood of θ0, introduce axis r with origin at y = 0 and direction θ, so

that positive (negative) values of r measure distances from y = 0 along the direction θ (θ+π).
Coordinates (r, θ) are like polar coordinates but allow differentiation w.r.t. r at r = 0. Locally
to (r, θ) = (0, θ0) and β = 0, we can therefore express the discontinuity boundary Σ as

Σ := {(r, θ) : H(x(r exp(iθ), r exp(−iθ), α(β)), α(β)) = 0},
where

d

dr
H(x(r exp(iθ0), r exp(−iθ0), 0), 0)

∣∣∣∣
r=0

= 2H0
xRe(q

0 exp(iθ0)) =H
0
y

[
cos(θ0)
sin(θ0)

]
�= 0

(see (D.3) and recall that H0
y is proportional to [cos(θ0), sin(θ0)]

� by definition of (D.4)), so
that, by the implicit function theorem, we can represent Σ explicitly as r = δ(θ, β), δ(θ, 0) = 0,
for some smooth function δ defined for θ in an open neighborhood (θ′, θ′′) of θ0.

Now, define θm(β) := argminθ∈(θ′,θ′′){|δ(θ, β)|} for β �= 0, and note that limβ→0 θm(β) =

θ0, so we can set θ0m = θ0. Then, the distance σ of the equilibrium y = 0 from Σ is given by

σ(β) := δ(θm(β), β),

with

(D.5a) σ0β1
= δβ1(θ0, 0)

in (3.21) (recall that δ(θ, 0) = 0 for all θ ∈ (θ′, θ′′), so δθ(θ0, 0) = 0).
In order to compute δβ1(θ0, 0), consider the identity

H(x(δ(θ0, β) exp(iθ0), δ(θ0, β) exp(−iθ0), α(β)), α(β)) = 0,

and take the derivative w.r.t. β1 at β = 0. We thus obtain

(D.5b) δβ1(θ0, 0) = − H0
x(f

(2))0

H0
x

[
Re q0, −Im q0

] [ cos(θ0)
sin(θ0)

] ,
where (D.1), (D.2),

α0
β = (β0α)

−1 =
ω0

−τ02α1
μ0α2

+ τ02α2
μ0α1

[
μ0α2

/ω0 τ02α2

−μ0α1
/ω0 −τ02α1

]

from (3.20), and the second equation of (A.5) have been taken into account. Thanks to (G.2)
and to the definitions in (D.3) and (D.4), we therefore have σ0β1

�= 0.
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